

Don't Let Soil Get Carried Away

Anju Kharbanda

4th Grade / Earth Science Ed and Verma Pastor Elementary School Mentors: Farideh Ehsasi/ Xi Yu/ Ed Kavazanjian

Research Background

Erosion is a natural phenomenon responsible for landforms that brings some unique challenges for earth and its inhabitants.

- Decrease in soil fertility and flooding
- Health Risks such as valley fever and other diseases
- Traditionally engineers have been using water, mulch, & vegetation to prevent

Research Background

CBBG (Center for Bio-Mediated and Bio-Inspired Geotechnics) is researching sustainable and bio-inspired methods to reduce soil erosion and strengthen soil.

Precipitation) is a bio-inspired and biomediated method that strengthens soil

Research Objectives

- Prepare, test, and compare the application of different EICP solutions for strengthening soil.
- Study the performance of different EICP solutions on mitigation of erosion on different soil types.

Research Objectives

 Measure the Carbonate content of EICP treated soil by using a calcimeter and perform SEM and Optical Microscope imaging.

Research Conclusions

- Soil loss is higher in finer sand than coarse sand
- Steep angle slopes cause a bigger amount of soil loss.

Research Conclusions

- EICP treated soil is 3 to 4 times stronger as measured by penetrometer testing
- •1M urea 0.67M CaCl₂ EICP solution soil samples exhibited the highest penetration resistance (105 kpa)

Lesson Description

This lesson is part of a unit about Soil erosion. Students will explore different types of erosion and the factors that affect erosion (slope, particle size, wind speed etc).

Standards

- NGSS: ESS2.A: Earth Materials and Systems: Rainfall helps to shape the land and affects the types of living things found in a region.
 Water, ice, wind, living organisms, and gravity break rocks, soils, and sediments into smaller particles and move them around. (4-ESS2-1)
- AZ State Standards: 4. E1U2.10 Define problem(s) and design solution(s) to minimize the effects of natural hazards.

Lesson Objectives

- SWBAT discuss and determine how soil erosion impacts the environment and people.
- SWBAT write a hypothesis that predicts which material will create the most resistance against erosion.
- SWBAT create crust using different materials such as glue, corn starch, playdough, vegetation, EICP etc.
- SWBAT compare the efficiency and sustainability of their crust and discuss the pros and cons of each soil cover.

Lesson Description: Engineering process

CREATE

IMPROVE

NASA's BEST **Engineering Design Process**

ASK

IMAGINE

PLAN 0

TEST M

SHARE

ASK: Identify &Define the Problem

IMAGINE: Brainstorm Solutions Research Ideas

PLAN: Select & Sketch a Design

CREATE: Build a model or prototype

TEST: Collect Data & Evaluate the Solution

IMPROVE: Optimize Redesign the Solution

SHARE: Communicate the results

Lesson Description: Engage/ Ask

In this lesson we will explore how we can strengthen the soil and control soil erosion. Let's start with why we need to protect soil. Here is a video that gives us some insight.

https://www.youtube.com/watch?v=ETRK0tUKMjA

Lesson Description: Explain/ Imagine

Question - What are some of the effective ways to create a crust on the soil that will make it strong and resist the erosion?

- 1. Erosion Powerpoint
- 2. Students will conduct research in groups and find some ways of protecting soil.
- 3. Each group will present their findings by writing a proposal.

Lesson Description: Explore/ Plan and create

Question - What are some of the effective ways to create a crust on the soil that will make it strong and resist the erosion

Lab 1- Create a solution

Students will be divided into teams and each team will create a solution to create a soil crust.

Teams are :Team water, Team vegetation, Team EICP, Team Cornstarch, Team Glue.

Lesson Description: Explore/ Test

Question - Which solution makes the strongest crust?

Lab 2- Strength Test

Student Teams will test the strength of their treated sample against an untreated sample using 2 out of the 3 tests:

- Penetrometer (crust strength)
- Hair dryer (wind resistance)
- Nasco soil erosion kit (water resistance)

Lesson Description: Elaborate

Question - Are your solutions really practical? Sustainable? Economical?

Whole class discussion- What are some of the other factors that make a solution good or bad?

Students will rate each of the solutions on cost, sustainability, and effectiveness.

Lesson Description: Evaluation/ Assessment

Writing activity-I think_____ is the best solution because____

Quiz- What did you learn?

https://quizizz.com/embed/quiz/649b618fd8c 949001dae20c2

A special thanks to Katie Currier, Shivangi Jain, Logan Tsosie, Anna Marti Subirana, Kristin Shelton, Amar Mohite, Leah Folkestad, Jean Larson and the entire CBBG team for all of their support

Questions?

Anju Kharbanda anju.kharbanda@rsd.k12.az.us

